Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 128: 108716, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277856

RESUMO

Cassava extracts containing cyanogenic compounds demonstrate anticancer properties. The cyanogenic glucoside linamarin found abundantly in cassava can release hydrogen cyanide (HCN) upon hydrolysis, a potent cytotoxin. However, linamarin's hydrolysis mechanism by human enzymes is poorly delineated and constitutes a bottleneck for therapeutic development. This study aimed to investigate linamarin's hydrolysis mechanism by human ß-glucosidase and identify structural derivatives with enhanced hydrolytic potential using density functional theory calculations. Results revealed α-anomeric derivatives as promising, with leaving group ability and steric bulk strongly governing hydrolysability. We identified several linamarin analogs with predicted rapid hydrolysis kinetics that may enable swift cytotoxic HCN release against cancer cells. This investigation enriches understanding of cyanogenic glycoside reactivity to facilitate their development as targeted antineoplastic agents. The identified derivatives set the groundwork for experimental evaluation of enhanced linamarin-inspired compounds as innovative cancer therapeutics.


Assuntos
Manihot , Neoplasias , Humanos , Hidrólise , Nitrilas , Cianeto de Hidrogênio , Glicosídeos/química , Glicosídeos/toxicidade , Manihot/química
2.
J Mol Graph Model ; 102: 107767, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130394

RESUMO

Mycoleptodiscin B is a natural product extracted from the endophytic fungus Mycoleptodiscus sp. found in Sri Lanka and Panama with experimentally unexplored activities for human targets. In this study, a computational methodology was applied to determine druggable targets of mycoleptodiscin B. According to the computational toxicity and pharmacokinetics assessment, mycoleptodiscin B was proven to be a suitable drug candidate. Druggable targets for this compound, aromatase, acidic plasma glycoprotein and androgen receptor, were predicted using reverse docking. A two-step validation of those targets was performed using conventional molecular docking and molecular dynamic (MD) simulations, resulting in aromatase being determined as the potential therapeutic target. Based on molecular mechanics/Generalized Born Surface Area (GBSA) free energies and ligand stability inside the active site cavity during its 120 ns MD run, it can be concluded that mycoleptodiscin B is a potent aromatase inhibitor and could be subjected to further in vitro and in vivo experiments in the drug development pipeline. Consequently, natural product chemists can quickly identify the hidden medicinal properties of their miracle compounds using the computational approach applied in this research.


Assuntos
Alcaloides , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Fungos , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...